

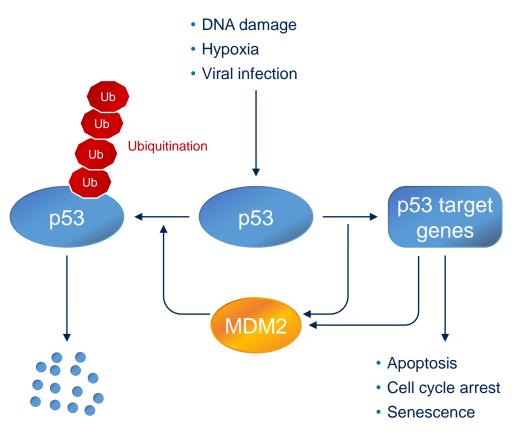
#ASC022

First-in-Human Study of PC14586, a Small Molecule Structural Corrector of Y220C Mutant p53, in Patients With Advanced Solid Tumors Harboring a *TP53* Y220C Mutation

Ecaterina E. Dumbrava,¹ Melissa L. Johnson,² Anthony W. Tolcher,³ Geoffrey I. Shapiro,⁴ John A. Thompson,⁵ Anthony B. El-Khoueiry,⁶ Andrae L. Vandross,⁷ Shivaani Kummar,⁸ Aparna R. Parikh,⁹ Pamela N. Munster,¹⁰ Erika Daly,¹¹ Laura DeLeon,¹² Megan Khaddar,¹² Kimberley LeDuke,¹² Kimberly Robell,¹² Lisa Sheehan,¹² Meagen St Louis,¹² Amy Wiebesiek,¹² Leila Alland,¹² Alison M. Schram¹³

¹The University of Texas MD Anderson Cancer Center, Houston, TX; ²Sarah Cannon Research Institute, Nashville, TN; ³NEXT Oncology, San Antonio, TX; ⁴Dana Farber Cancer Institute, Boston, MA; ⁵Seattle Cancer Care Alliance, Seattle, WA; ⁶USC Norris Cancer Center, Los Angeles, CA; ⁷NEXT Oncology, Austin, TX; ⁸OHSU Knight Cancer Institute, Portland, OR; ⁹Massachusetts General Hospital, Boston, MA; ¹⁰University of California, San Francisco, San Francisco, CA; ¹¹Cytel, Inc., Waltham, MA; ¹²PMV Pharmaceuticals, Inc., Cranbury, NJ; ¹³Memorial Sloan Kettering Cancer Center, New York, NY.

This work was supported by PMV Pharmaceuticals, Inc., Cranbury, New Jersey, USA



PRESENTED BY: Dr. Ecaterina E. Dumbrava

p53 Has a Pivotal Role in the Body's Defense Against Cancer

- TP53 is a tumor suppressor gene¹⁻²
- The p53 protein binds to DNA and has key roles in cell cycle arrest, DNA repair, and apoptosis^{1–3}
 - Activated following cellular stress and DNA damage
 - Supports DNA repair before cellular replication
 - Induces apoptosis
- Protein levels are tightly controlled by MDM2⁴
- TP53 mutation resulting in p53 inactivation is a key step in oncogenesis³

Degradation

DNA, deoxyribonucleic acid; MDM2, mouse double minute 2 homolog.

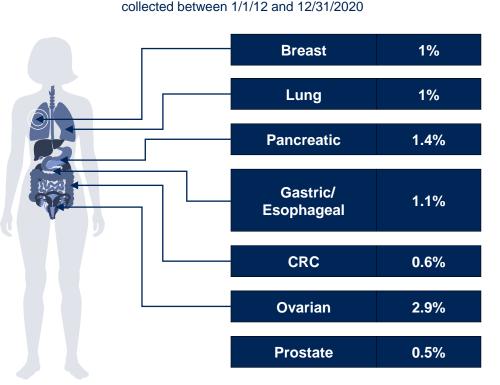
#ASC022

1. Chillemi G, et al. Cold Spring Harb Perspect Med. 2017;7:a028308. 2. Kastenhuber ER, et al. Cell. 2017;170:1062–1078. 3. Levine AJ. Nat Rev Cancer. 2020;20:471–480. 4. Levine AJ. J Mol Cell Biol. 2019;11:524–530.

TP53 Y220C Hotspot Mutation is Detected across Solid Tumor Types

- TP53 mutations are the most common genomic events across all human cancers¹
- Most *TP53* mutations occur in the central DNAbinding domain and ten of them are referred to as 'hot-spot' mutations, accounting for ~30% of the *TP53* mutations observed in human cancer^{1–2}
- p53 Y220C is a key hot-spot TP53 missense mutation that destabilizes p53^{1,3}
- p53 Y220C is present in ~1% of all solid tumors⁴

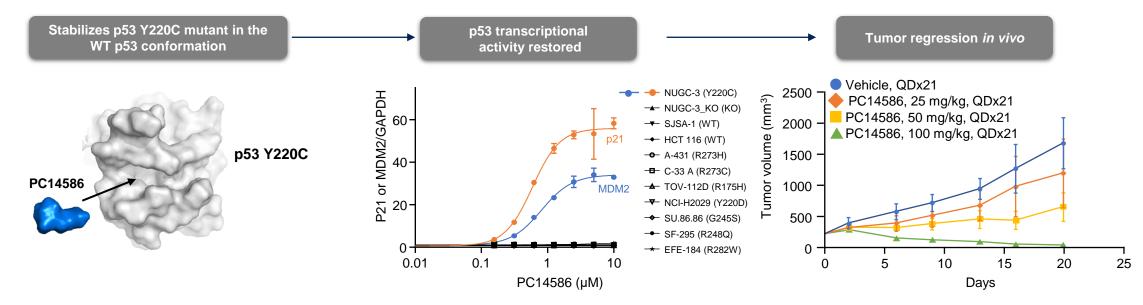
CRC, colorectal cancer; DNA, deoxyribonucleic acid.
1. Baugh EH, et al. *Cell Death Differ*. 2018;25,154–160.
2. Roszkowska KA, et al. *Int J Mol Sci*. 2020;21:1334.
3. Bouaoun L, et al. *Hum Mutat*. 2016;37:865–876.


4. Westphalen CB, et al. *NPJ Precis Oncol.* 2021;20;5(1):69.

#ASC022

PRESENTED BY: Dr. Ecaterina E. Dumbrava

Frequency of TP53 Y220C Across Common Solid Tumors Foundation Medicine Tissue and Heme assay test results



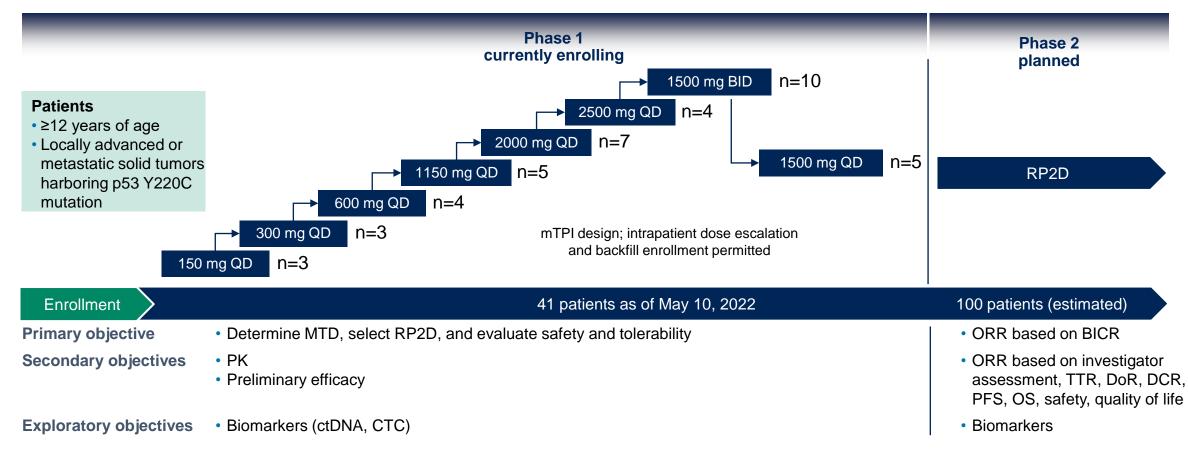
The prevalence of TP53 Y220C across different diseases was analyzed by using the FoundationInsights® web-based software platform to query a pan-solid tumor cohort of ~367,651 US-based, consented-for-research patients in the FoundationCore® Database⁴ that received FMI's Commercial Tissue or Heme assays between 1/1/12 and 12/31/2020

PC14586 is a p53 Y220C-Selective First-in-Class p53 Reactivator

- Orally available small molecule designed to selectively bind to the crevice contained in the p53 Y220C mutant protein¹
- Stabilizes the p53 Y220C mutant protein in the wild-type p53 conformation, thereby restoring transcription and tumor-suppressor function¹

MDM2, mouse double minute 2 homolog; KO, knockout; WT, wild-type. 1. Dumble M, et al. *Cancer Res.* 2021;81(13_Suppl):Abstract LB006.

#ASC022



PRESENTED BY: Dr. Ecaterina E. Dumbrava

A Seamless Phase 1/2 Clinical Trial (PYNNACLE trial)

Patients With Advanced Solid Tumors Harboring p53 Y220C Mutation

BICR, blinded independent central review; BID, twice daily; CTC, circulating tumor cells; ctDNA, circulating tumor DNA; DCR, disease control rate; DoR, duration of response; MTD, maximum tolerated dose; mTPI, modified toxicity probability interval design; ORR, objective response rate by RECIST (Response Evaluation Criteria in Solid Tumors) 1.1; OS, overall survival; PFS, progression-free survival; PK, pharmacokinetics; QD, once daily; RP2D, recommended Phase 2 dose; TTR, time-to-response.

NCT study identifier: NCT04585750.

#ASC022

PRESENTED BY: Dr. Ecaterina E. Dumbrava

Patient Demographics and Disease Characteristics

	n=41	Cancer Type, n (%)				
Age, years						
Median (min–max)	62 (32–84)	Small Cell Lung Germ Cell				
Sex, n (%)		2.4% (n=1) 2.4% (n=1)				
Female	25 (61)	Head and Neck				
Male	16 (39)	4.9% (n=2)				
Race, n (%)						
White	31 (76)	Endometrial				
Asian	3 (7)	4.9% (n=2) Ovary				
Black or African American	3 (7)	26.8% (r	=11)			
Other	1 (2)					
Not Reported/Unknown	3 (7)	Colon				
ECOG status, n (%)		12.2% (n=5)				
0	18 (44)					
1	23 (56)					
Prior systemic therapies, n (%)*						
1–2	17 (42.5)	Prostate				
≥3	23 (57.5)	12.2% (n=5) Pancrea				
Median (min–max)	3 (1–9)	19.5% (r	.=8)			
Germline <i>TP</i> 53 Y220C, n (%)		Breast				
Negative	38 (93)	14.6% (n=6)				
Positive	2 (5)					
Pending	1 (2)					

#ASC022

PRESENTED BY: Dr. Ecaterina E. Dumbrava

Content of this presentation is the property of the

author, licensed by ASCO. Permission required for reuse.

6

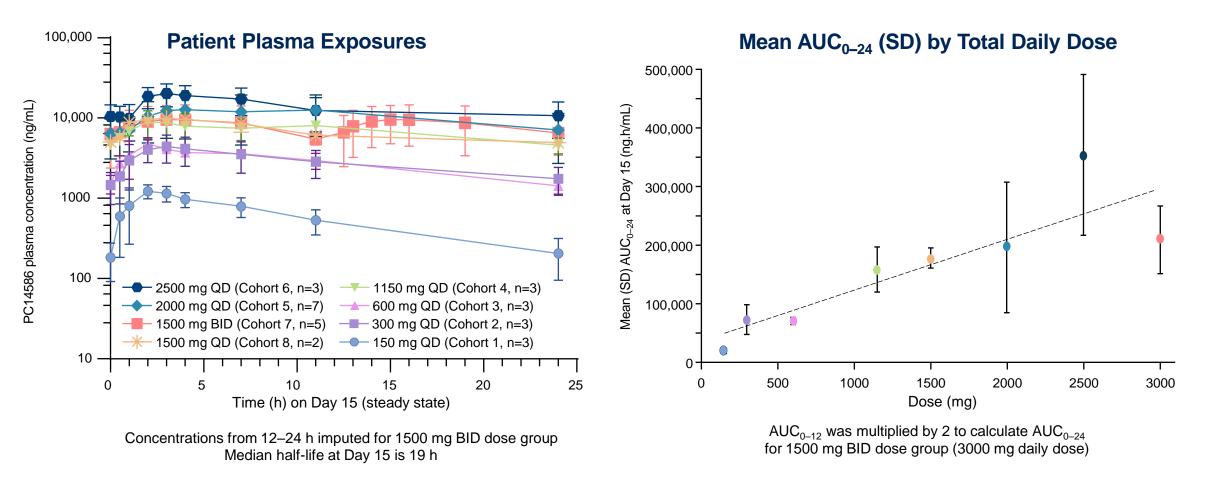
Treatment-Emergent Treatment-Related Adverse Events All Patients (n=41)

All Treatment-Emergent Treatment-Related AEs (Occurring in ≥3 Patients)		Max CTCAE			
Preferred Term	Any Grade	1	2	3	4
Any treatment-related AE, n (%)	33 (80.5)	12 (29.3)	11 (26.8)	9* (22.0)	1* (2.4)
Nausea	18 (43.9)	11 (26.8)	7 (17.1)		
Vomiting	11 (26.8)	6 (14.6)	5 (12.2)		
AST increased	9 (22.0)	7 (17.1)	1 (2.4)	1 (2.4)	
ALT increased	8 (19.5)	2 (4.9)	4 (9.8)	2 (4.9)	
Anemia	7 (17.1)	1 (2.4)	4 (9.8)	2 (4.9)	
Blood creatinine increased	7 (17.1)	3 (7.3)	4 (9.8)		
Fatigue	7 (17.1)	6 (14.6)	1 (2.4)		
Diarrhea	5 (12.2)	5 (12.2)			
Decreased appetite	3 (7.3)	2 (4.9)	1 (2.4)		
Headache	3 (7.3)	3 (7.3)			
Neutrophil count decreased	3 (7.3)	2 (4.9)		1 (2.4)	
Platelet count decreased	3 (7.3)	1 (2.4)	1 (2.4)	1 (2.4)	

- Most frequent treatment-related AEs (>15%) included nausea, vomiting, AST/ALT increase, anemia, blood creatinine increase, and fatigue
- Dose-limiting toxicities reported in 2 patients at 1500 mg BID
 - Grade 3 AST/ALT increase
 - Grade 3 acute kidney injury
- Maximum tolerated dose reached at 1500 mg BID
- RP2D not yet defined

Data cut-off May 10, 2022

*Grade 3 and 4 treatment-related AEs not shown in the table (each in one patient) are Grade 3 acute kidney injury, hypokalemia, and pneumonitis, and Grade 4 immune thrombocytopenia. AE, adverse event; ALT, alanine aminotransferase; AST, aspartate aminotransferase; BID, twice daily; CTCAE, Common Terminology Criteria for Adverse Events; RP2D, recommended Phase 2 dose.



#ASC022

Dose-Proportional Increases in AUC at Steady State

Data are preliminary with 29 out of 41 patients having Day 15 samples at time of data cut-off. Dose-proportional increases in C_{max} were also observed (not shown). AUC, area under the curve; BID, twice daily; C_{max} , maximum serum concentration; QD, once daily; SD, standard deviation.

Data cut-off April 26, 2022

#ASC022

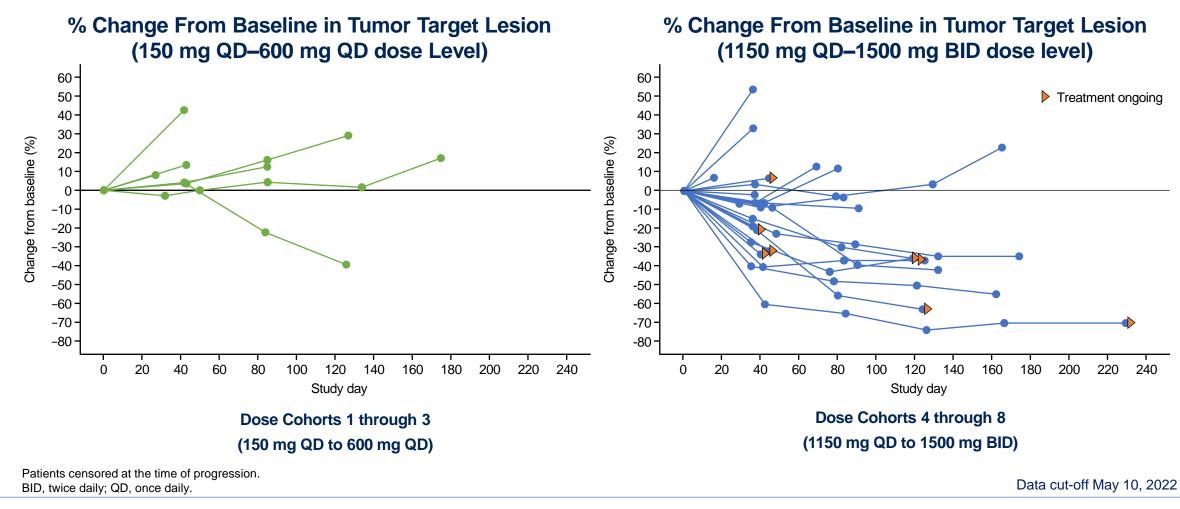
Objective Response Rate Per RECIST 1.1

Based on Investigator Assessment

	Dose	All		
	150 mg QD–600 mg QD	1150 mg QD–1500 mg BID	AII	
Enrolled, n	10	31	41	
Patients with measurable disease at baseline, n	8	28	36	
Eligible for response evaluation*, n	8	25	33	
ORR‡, n (%)	0 (0)	8 (32.0)	8 (24.2)	
PR	0	6	6	
uPR	0	2	2	
SD§	4	11	15	
PD	4	3	7	
Not evaluable*	0	3	3	

*Patients without a post-baseline assessment are either excluded from "eligible for response evaluation" if ongoing, or considered "not evaluable" if discontinued; ‡ORR = PR + uPR; §Includes three initially unconfirmed PR that progressed on the next tumor assessment.

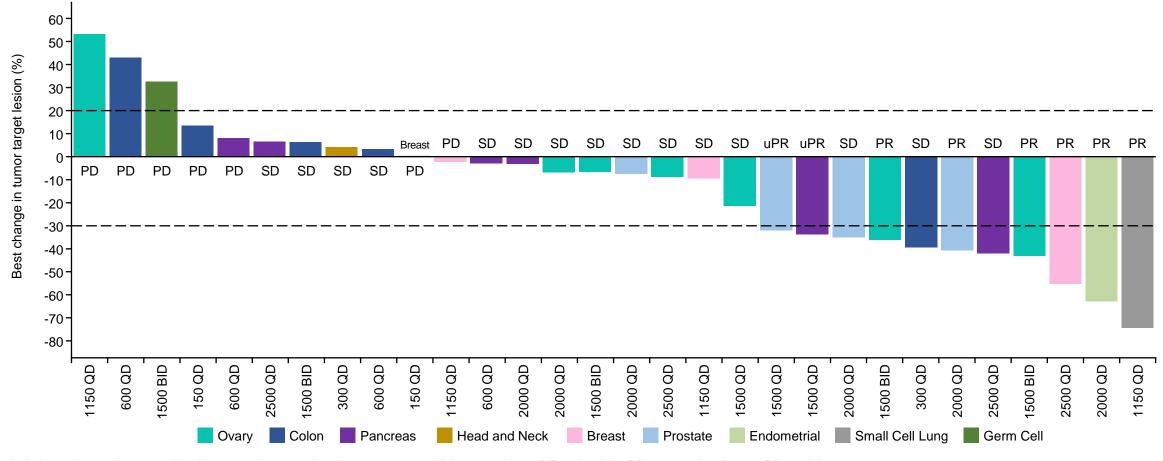
BID, twice daily; ORR, objective response rate; PD, progressive disease; PR, partial response; QD, once daily; RECIST, Response Evaluation Criteria in Solid Tumors; SD, stable disease; uPR, unconfirmed PR pending confirmation.



#ASC022

PRESENTED BY: Dr. Ecaterina E. Dumbrava

Target Lesion Reduction in Low vs High Dose Cohorts



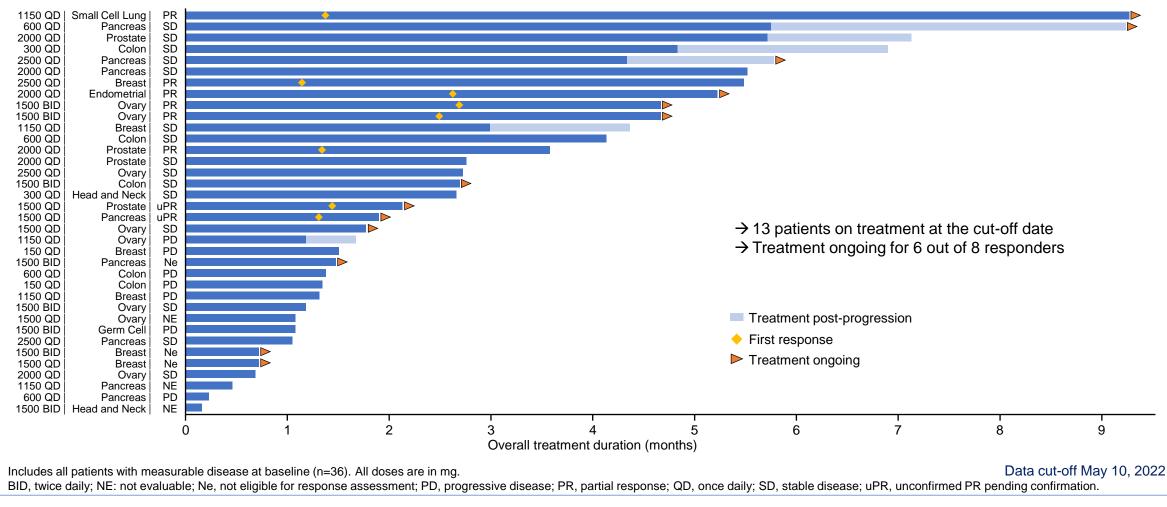
#ASC022

PRESENTED BY: Dr. Ecaterina E. Dumbrava Content of this presentation is the property of the author, licensed by ASCO. Permission required for reuse.

ASCO[®] AMERICAN SOCIETY OF CLINICAL ONCOLOGY KNOWLEDGE CONQUERS CANCER

Target Lesion Reduction Across Tumor Types

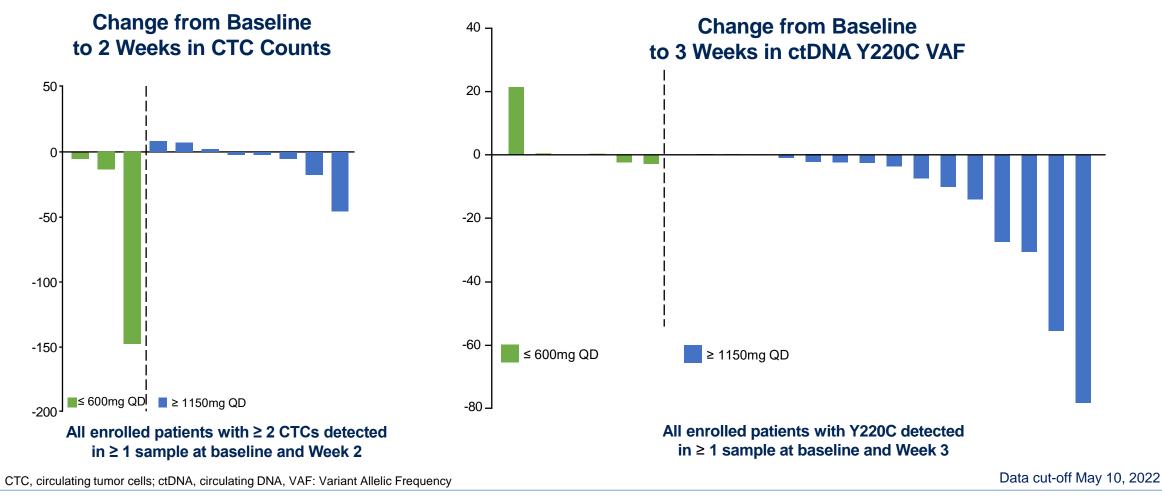
Includes patients with measurable disease and one post-baseline assessment. All doses are in mg. BID, twice daily; PD, progressive disease; PR, partial response; QD, once daily; SD, stable disease; uPR, unconfirmed PR pending confirmation.



#ASC022

PRESENTED BY: Dr. Ecaterina E. Dumbrava

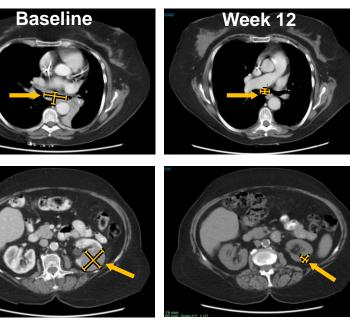
Duration of PC14586 Therapy



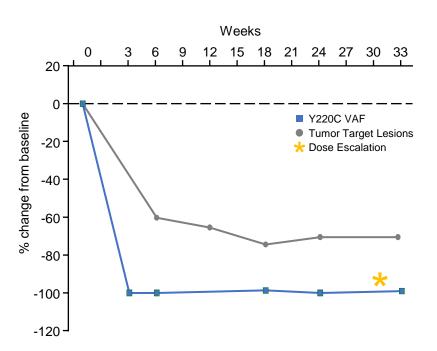
#ASC022

PRESENTED BY: Dr. Ecaterina E. Dumbrava

CTC & ctDNA Decreases May Be Early Biomarkers of Anti-Tumor Activity



#ASC022



SCLC Patient With Rapid and Sustained Partial Response

- 71-year-old woman with ES-SCLC
- Progressed after 2 prior lines of therapy with worsening dyspnea and complete occlusion of the left bronchus with atelectasis
 - Etoposide, carboplatin and atezolizumab (10 months)
 - Topotecan (4 months)
- Prior radiotherapy of brain metastasis
- TP53 Y220C detected by NGS
- PC14586 1150mg QD was started
 - PR after 6 weeks with relief of respiratory symptoms
 - Increased to 2000mg QD at week 30
- Well tolerated with transient treatment related Grade 3 neutropenia
- Treatment ongoing for 9+ months

60% reduction in target lesions at Week 6 and at 70% at Week 12

Correlation between radiographic tumor shrinkage and Y220C ctDNA decrease

AE, adverse event; ctDNA, circulating tumor DNA; ES, extensive stage; NGS, next-generation sequencing; PR, partial response; QD, once daily; SCLC, small cell lung carcinoma; VAF, variant allelic frequency. Images courtesy of Dr Melissa Johnson, Sarah Cannon Research Institute.

PRESENTED BY: Dr. Ecaterina E. Dumbrava

Conclusions

- PC14586 has an acceptable safety profile, with MTD reached
- PC14586 exposure is generally dose proportional over a wide dose range and supports once daily dosing
- Preliminary efficacy in patients across solid tumor types harboring TP53 Y220C mutation was demonstrated
- Enrollment at dose(s) below the MTD to support RP2D determination is ongoing

#ASC022

Acknowledgments

We would like to thank:

- All the patients, their families and caregivers who have participated, and continue to participate in this clinical trial
- Investigators and research staff
- MedPace, Resolution Biosciences, Foundation Medicine, and Rarecyte

US clinical trial sites

- Dana Farber Cancer Institute, Boston, MA
- NEXT Oncology, Austin, TX

#ASC022

ANNUAL MEETING

- Massachusetts General Hospital, Boston, MA
- Memorial Sloan Kettering Cancer Center, New York, NY
- Seattle Cancer Care Alliance, Seattle, WA
- USC Norris Cancer Center, Los Angeles, CA

Clinical trial is sponsored by PMV Pharmaceuticals, Inc.

PRESENTED BY:

- OHSU Knight Cancer Institute, Portland, OR
- NEXT Oncology, San Antonio, TX
- MD Anderson Cancer Center, Houston, TX
- Sarah Cannon Research Institute, Nashville, TN
- UC San Francisco, San Francisco, CA
- Hoag Cancer Institute, Newport Beach, CA

Medical writing was supported by SCION

